Taut distance-regular graphs and the subconstituent algebra
نویسندگان
چکیده
منابع مشابه
Taut distance-regular graphs and the subconstituent algebra
We consider a bipartite distance-regular graph Γ with diameter D ≥ 4 and valency k ≥ 3. Let X denote the vertex set of Γ and fix x ∈ X. Let Γ22 denote the graph with vertex set X̆ = {y ∈ X | ∂(x, y) = 2}, and edge set R̆ = {yz | y, z ∈ X̆, ∂(y, z) = 2}, where ∂ is the path-length distance function for Γ. The graph Γ22 has exactly k2 vertices, where k2 is the second valency of Γ. Let η1, η2, . . . ...
متن کاملTaut Distance-Regular Graphs of Odd Diameter
Let denote a bipartite distance-regular graph with diameter D ≥ 4, valency k ≥ 3, and distinct eigenvalues θ0 > θ1 > · · · > θD . Let M denote the Bose-Mesner algebra of . For 0 ≤ i ≤ D, let Ei denote the primitive idempotent of M associated with θi . We refer to E0 and ED as the trivial idempotents of M . Let E, F denote primitive idempotents of M . We say the pair E, F is taut whenever (i) E,...
متن کاملThe subconstituent algebra of a bipartite distance-regular graph; thin modules with endpoint two
We consider a bipartite distance-regular graph Γ with diameter D ≥ 4, valency k ≥ 3, intersection numbers bi, ci, distance matrices Ai, and eigenvalues θ0 > θ1 > · · · > θD. Let X denote the vertex set of Γ and fix x ∈ X. Let T = T (x) denote the subalgebra of MatX(C) generated by A,E ∗ 0 , E ∗ 1 , . . . , E ∗ D, where A = A1 and E ∗ i denotes the projection onto the i th subconstituent of Γ wi...
متن کاملDistance-regular graphs, pseudo primitive idempotents, and the Terwilliger algebra
Let Γ denote a distance-regular graph with diameter D ≥ 3, intersection numbers ai, bi, ci and Bose-Mesner algebra M. For θ ∈ C ∪∞ we define a 1 dimensional subspace of M which we call M(θ). If θ ∈ C then M(θ) consists of those Y in M such that (A−θI)Y ∈ CAD, where A (resp. AD) is the adjacency matrix (resp. Dth distance matrix) of Γ. If θ = ∞ then M(θ) = CAD. By a pseudo primitive idempotent f...
متن کاملDistance-regular graphs and the q-tetrahedron algebra
Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) and b 6= 1, α = b − 1. The condition on α implies that Γ is formally self-dual. For b = q we use the adjacency matrix and dual adjacency matrix to obtain an action of the q-tetrahedron algebra ⊠q on the standard module of Γ. We describe four algebra homomorphisms into ⊠q from the quantum affine algebra Uq(ŝl2); using t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2006
ISSN: 0012-365X
DOI: 10.1016/j.disc.2006.03.046